欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足下列要求:span{a1,a2.ak}=span{b1,b2.bk}k=1,2,...,m.其中span为张成的子空间,试解释并构造以上过程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/15 17:20:21
欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足下列要求:span{a1,a2.ak}=span{b1,b2.bk}k=1,2,...,m.其中span为张成的子空间,试解释并构造以上过程.

欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足下列要求:span{a1,a2.ak}=span{b1,b2.bk}k=1,2,...,m.其中span为张成的子空间,试解释并构造以上过程.
欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足下列要求:span{a1,a2.ak}=span{b1,b2.bk}k=1,2,...,m.其中span为张成的子空间,试解释并构造以上过程.新向量组与原向量组的关系是什么?这个方法有什么应用?

欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足下列要求:span{a1,a2.ak}=span{b1,b2.bk}k=1,2,...,m.其中span为张成的子空间,试解释并构造以上过程.
这是指的 Smidt 施密特正交化过程
具体过程教材中都有
结论是:两个向量组等价,即可以互相线性表示
所以它们的张成空间相等
主要应用在实对称矩阵的正交对角化

欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足下列要求:span{a1,a2.ak}=span{b1,b2.bk}k=1,2,...,m.其中span为张成的子空间,试解释并构造以上过程. 设a1 a2.a(n-1)是欧式空间R的n次中一正交向量组,b1 b2属于R的n次设a1 a2.a(n-1)是欧式空间R的n次中一正交向量组,b1 b2属于R的n次,且b1与每个ai内积等于0,b2与每个ai的内积等于0,证明b1 b2线性无关. 设n维向量a1,a2.aS的秩为r则A.向量组中任意r-1个向量都线性无关 B.向量组中任意r个向量均线性无关C.向量组中任意r+1个向量军线性无关 D,向量组中的向量个数必大于r 秩r=极大线性无关组中向量的个数,基础解系本身又是一个极大线性无关组,但其所含向量个数为n-r,那极大…秩r=极大线性无关组中向量的个数,基础解系本身又是一个极大线性无关组,但其所含 若向量A中存在r个向量a1,a2...线性无关,A中任意r+1个向量均线性相关,则a1,a2...是向量A的极大线性无关组 设a1,a2,^,a,为n维向量组,且秩 (a1,a2,^,a)=r,则()a该向量组中任意r个向量线性无关b该向量组中任意r=1个向量线性无关c该向量组存在唯一极大无关主dd该向量组有若干个极大无关主 线性代数有关向量的线性无关的问题由a2,a3,a4线性无关及a1=2a2-a3知,向量组的秩r(a1,a2,a3,a4)=3,为什么?当a1,a2...as线性无关时,若秩r(A)=n,则Aa1,Aa2,...,Aas线性无关,否则Aa1,Aa2,...,Aas可以线性相关, 设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2 向量组a1,a2...an的秩为r,则a1,a2...an中至少有一个r个向量的部分组线性无关这句话对吗 向量组a1,a2,a3-an的秩为r,则a1,a2,a3-an中至少有一个r个向量的部分组线性无关, 若n维列向量a1.a2.a.线性无关,则( )A.组中增加一个向量后也线性无关B,组中去掉一个向量后也线性无关C,组中只有一个向量不能由其余向量线性表出D.r>n··到底哪个 急急啊··· 在欧式空间R4中,求三个向量a1,a2,a3所生成的子空间的一个标准正交基a1=(1,0,1,1)T,a2=(2,1,0,-3)T,a3=(1,-1,1,-1)T老师,这题是想考施密特正交化原理吧.但是我想问1)为什么三个线性无关向量可以生成一 已知向量组a1,a2,...,as的秩为r.证明:a1,a2,...as中任意r个线性无关的向量都构成它的一个极大线性无关组. 设向量组a1,a2.am的秩为r,则a1,a2,.am中任意r个线性无关的向量都构成它的极大线性无关组 关于线性代数 向量组的最大线性无关向量 定义:设有向量组A,如果在A中能选出r个向量A0:a1,a2,···,ar,满足(1)向量组A0:a1,a2,···,ar 线性无关;(2)向量组A中任意r+1个向量(如果存在的话)都线性相关 线性代数证明:在n维向量空间中,如果a1,a2,…an线性无关,则任一向量b可以由a1,a2…an表示 向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为 向量组a1,a2,---,as线性无关,向量组b1,b2,bs线性无关的充分必要条件为 A向量组a1,a2,---,as可由向量组b1,b2,bs线性表示B向量 已知向量组a1,a2线性无关,证明向量组a1+2a2,a1-a2是线性无关的