人体中有RNA么

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/06 10:58:22
人体中有RNA么

人体中有RNA么
人体中有RNA么

人体中有RNA么
高中阶段讲说有三种RNA.mRNA tRNA rRNA
下面是百度百科的,你自己看看吧
RNA的种类:
在生物体内发现主要有三种不同的RNA分子在基因的表达过程中起重要的作用.它们是信使RNA(messengerRNA,mRNA)、转移(tranfer RNA,tRNA)、核糖体RNA(ribosomal RNA,rRNA).RNA含有四种基本碱基,即腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶.此外还有几十种稀有碱基.
RNA的一级结构主要是由AMP、GMP、CMP和UMP四种核糖核苷酸通过3',5'磷酸二酯键相连而成的多聚核苷酸链.天然RNA的二级结构,一般并不像DNA那样都是双螺旋结构,只有在许多区段可发生自身回折,使部分A-U、G-C碱基配对,从而形成短的不规则的螺旋区.不配对的碱基区膨出形成环,被排斥在双螺旋之外.RNA中双螺旋结构的稳定因素,也主要是碱基的堆砌力,其次才是氢键.每一段双螺旋区至少需要4~6对碱基对才能保持稳定.在不同的 RNA中,双螺旋区所占比例不同.【RNA的二级结构】细胞内有三类主要的核糖核酸,即:mRNA、rRNA、tRNA.它们各有特点.在大多数细胞中 RNA的含量比DNA多5~8倍.【大肠杆菌RNA的性质】
mRNA
生物的遗传信息主要贮存于DNA的碱基序列中,但DNA并不直接决定蛋白质的合成.而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA 上控制蛋白质合成的遗传信息传递给核糖体.现已证明,这种中介物质是一种特殊的RNA.这种RNA起着传递遗传信息的作用,因而称为信使RNA (messenger RNA,mRNA).
mRNA的功能就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达过程中的遗传信息传递过程.在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质.因为这种未经加工的前体 mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneous nuclear RNA,hnRNA).
tRNA
如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂.但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力.因此,必须用一种特殊的RNA——转移RNA(transfer RNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链.每种氨基酸可与1-4种 tRNA相结合,现在已知的tRNA的种类在40 种以上.
tRNA是分子最小的RNA,其分子量平均约为27000(25000-30000),由70到90个核苷酸组成.而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶.这类稀有碱基一般是在转录后,经过特殊的修饰而成的.
1969年以来,研究了来自各种不同生物,:如酵母、大肠杆菌、小麦、鼠等十几种tRNA的结构,证明它们的碱基序列都能折叠成三叶草形二级结构(图3-23),而且都具有如下的共性:
① 5’末端具有G(大部分)或C.
② 3’末端都以ACC的顺序终结.
③ 有一个富有鸟嘌呤的环.
④ 有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对.
⑤ 有一个胸腺嘧啶环.
rRNA
核糖体RNA(ribosomal RNA,rRNA)是组成核糖体的主要成分.核糖体是合成蛋白质的工厂.在大肠杆菌中,rRNA量占细胞总RNA量的75%-85%,而tRNA占15%,mRNA仅占3-5%.
rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷.原核生物的核糖体所含的rRNA有5S、16S及23S三种.S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒子的大小直径成比例.5S含有120个核苷酸,16S含有1540个核苷酸,而23S含有2900个核苷酸.而真核生物有4种rRNA,它们分子大小分别是5S、5.8S、18S和28S,分别具有大约120、160、 1900和4700个核苷酸.
rRNA是单链,它包含不等量的A与U、G与C,但是有广泛的双链区域.在双链区,碱基因氢键相连,表现为发夹式螺旋.
rRNA在蛋白质合成中的功能尚未完全明了.但16 S的rRNA3’端有一段核苷酸序列与mRNA的前导序列是互补的,这可能有助于mRNA与核糖体的结合.
snRNA
除了上述三种主要的RNA外,细胞内还有小核RNA(small nuclearRNA,snRNA).它是真核生物转录后加工过程中RNA剪接体(spilceosome)的主要成分.现在发现有五种snRNA,其长度在哺乳动物中约为100-215个核苷酸.snRNA一直存在于细胞核中,与40种左右的核内蛋白质共同组成RNA剪接体,在RNA转录后加工中起重要作用.另外,还有端体酶RNA(telomeraseRNA),它与染色体末端的复制有关;以及反义RNA(antisenseRNA),它参与基因表达的调控.
上述各种RNA分子均为转录的产物,mRNA最后翻译为蛋白质,而rRNA、tRNA及snRNA等并不携带翻译为蛋白质的信息,其终产物就是RNA.
2006诺贝尔医学奖成果RNA干扰机制解读
1990年,曾有科学家给矮牵牛花插入一种催生红色素的基因,希望能够让花朵更鲜艳.但意想不到的事发生了:矮牵牛花完全褪色,花瓣变成了白色!科学界对此感到极度困惑.
类似的谜团,直到美国科学家安德鲁·法尔和克雷格·梅洛发现RNA(核糖核酸)干扰机制才得到科学的解释.两位科学家也正是因为1998年做出的这一发现而荣获今年的诺贝尔生理学或医学奖.
根据法尔和梅洛的发现,科学家在矮牵牛花实验中所观察到的奇怪现象,其实是因为生物体内某种特定基因“沉默”了.导致基因“沉默”的机制就是RNA干扰机制.
此前,RNA分子只是被当作从DNA(脱氧核糖核酸)到蛋白质的“中间人”、将遗传信息从“蓝图”传到“工人”手中的“信使”.但法尔和梅洛的研究让人们认识到,RNA作用不可小视,它可以使特定基因开启、关闭、更活跃或更不活跃,从而影响生物的体型和发育等.
诺贝尔奖评审委员会在评价法尔和梅洛的研究成果时说:“他们的发现能解释许多令人困惑、相互矛盾的实验观察结果,并揭示了控制遗传信息流动的自然机制.这开启了一个新的研究领域.”
科学家认为,RNA干扰技术不仅是研究基因功能的一种强大工具,不久的未来,这种技术也许能用来直接从源头上让致病基因“沉默”,以治疗癌症甚至艾滋病,在农业上也将大有可为.从这个角度来说,“沉默”真的是金.美国哈佛医学院研究人员已用动物实验表明,利用RNA干扰技术可治愈实验鼠的肝炎.
目前,尽管尚有一些难题阻碍着RNA干扰技术的发展,但科学界普遍对这一新兴的生物工程技术寄予厚望.这也是诺贝尔奖评审委员会为什么不坚持研究成果要经过数十年实践验证的“惯例”,而破格为法尔和梅洛颁奖的原因之一.
诺贝尔生理学或医学奖评审委员会主席戈兰·汉松说:“我们为一种基本机制的发现颁奖.这种机制已被全世界的科学家证明是正确的,是给它发个诺贝尔奖的时候了.”

当然有了 细胞生物都有dna和rna

..有的
..很有的
造蛋白质用得到

有 DNA转录成的MRNA 以及核糖体中的TRNA

有,真核细胞的RNA主要分布在细胞质中,高一生物的必修一的P27,有图,对人的口腔上皮细胞的观察,红色的部分就是显示RNA.