请问什么是平面几何知识?

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/28 19:34:02
请问什么是平面几何知识?

请问什么是平面几何知识?
请问什么是平面几何知识?

请问什么是平面几何知识?
平面几何是相对于立体几何来说的,就是同一平面内线与线,形状与形状之间的关系.
相交线和平行线
1.定理与性质
对顶角的性质:对顶角相等.
2.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直.
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.
3.平行公理:经过直线外一点有且只有一条直线与已知直线平行.
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
4.平行线的性质:
性质1:两直线平行,同位角相等.
性质2:两直线平行,内错角相等.
性质3:两直线平行,同旁内角互补.
5.平行线的判定:
判定1:同位角相等,两直线平行.
判定2:内错角相等,两直线平行.
判定3:同旁内角相等,两直线平行.
知识点二
三角形
一、三角形相关概念
1
.三角形的概念
由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形
要点:①三条线段;②不在同一直线上;③首尾顺次相接.
2
.三角形中的三种重要线段

1
)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交
点之间的线段叫做三角形的角平分线.

2
)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的
中线.

3
)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角
形的高线,简称三角形的高.
二、轴对称图形
(一)基本定义
1.
轴对称图形
如果一个图形沿一条直线折叠,
直线两旁的部分能够互相重合,
这个图形就叫做轴对称图形,
这条直线就叫做对称轴
.
折叠后重合的点是对应点,叫做对称点
.
2.
线段的垂直平分线
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
3.
轴对称变换
由一个平面图形得到它的轴对称图形叫做轴对称变换
.
4.
等腰三角形
有两条边相等的三角形,叫做等腰三角形
.
相等的两条边叫做腰,另一条边叫做底边,两腰
所夹的角叫做顶角,底边与腰的夹角叫做底角
.
5.
等边三角形
三条边都相等的三角形叫做等边三角形
.
等等

欧几里得几何有时就指平面上的几何,即平面几何。本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何。 高维的情形请参看欧几里得空间。
数学上,欧几里得几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。
其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在...

全部展开

欧几里得几何有时就指平面上的几何,即平面几何。本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何。 高维的情形请参看欧几里得空间。
数学上,欧几里得几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。
其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss,1777年—1855年)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利人波约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即“非欧几何”(non-Euclidean geometry)。
下面是四个重要定理
梅涅劳斯(Menelaus)定理(梅氏线)
△ABC的三边BC、CA、AB或其延长线上有点A'、B'、C',则A'、B'、C'共线的充要条件是
(CB'/A'C)·(CB'/B'A)·(AC'/C'B)= 1
塞瓦(Ceva)定理(塞瓦点)
△ABC的三边BC、CA、AB或其延长线上有点A'、B'、C',则AA'、BB'、CC'三线平行或交于一点的充要条件是
BA'/A'C·CB'/BA'·AC'/C'B=1
托勒密(Ptolemy)定理
四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)
从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
1.  设AD是△ABC的边BC上的中线,直线CF交AD于F。求证:。
【分析】CEF截△ABD→(梅氏定理)
【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
平面几何
2.  过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→(梅氏定理)
DGF截△ACM→(梅氏定理)
∴===1
【评注】梅氏定理
3.  D、E、F分别在△ABC的BC、CA、AB边上,
,AD、BE、CF交成△LMN。
求S△LMN。
【分析】
【评注】梅氏定理
4.  以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。求证:AE、BF、CG相交于一点。
【分析】
【评注】塞瓦定理
5. 已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB-BC。
【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理
6. 已知正七边形A1A2A3A4A5A6A7。
求证:。(第21届全苏数学竞赛)
【分析】
【评注】托勒密定理
7. △ABC的BC边上的高AD的延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F。
求证:BC·EF=BF·CE+BE·CF。
【分析】
【评注】西姆松定理(西姆松线)
8. 正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比为AM:AC=CN:CE=k,且B、M、N共线。求k。(23-IMO-5)
【分析】
【评注】面积法
9. O为△ABC内一点,分别以da、db、dc表示O到BC、CA、AB的距离,以Ra、Rb、Rc表示O到A、B、C的距离。
求证:(1)a·Ra≥b·db+c·dc;
(2) a·Ra≥c·db+b·dc;
(3) Ra+Rb+Rc≥2(da+db+dc)。
【分析】
【评注】面积法
10.△ABC中,H、G、O分别为垂心、重心、外心。
求证:H、G、O三点共线,且HG=2GO。(欧拉线)
【分析】
【评注】同一法
11.△ABC中,AB=AC,AD⊥BC于D,BM、BN三等分∠ABC,与AD相交于M、N,延长CM交AB于E。
求证:MB//NE。
【分析】
【评注】对称变换
12.G是△ABC的重心,以AG为弦作圆切BG于G,延长CG交圆于D。求证:AG2=GC·GD。
【分析】
【评注】平移变换
13.C是直径AB=2的⊙O上一点,P在△ABC内,若PA+PB+PC的最小值是,求此时△ABC的面积S。
【分析】
【评注】旋转变换
麦田怪圈平面几何图
费马点:已知O是△ABC内一点,∠AOB=∠BOC=∠COA=120°;P是△ABC内任一点,求证:PA+PB+PC≥OA+OB+OC。(O为费马点)
【分析】将CC‘,OO’, PP‘,连结OO’、PP‘。则△B OO’、△B PP‘都是正三角形。
∴OO’=OB,PP‘ =PB。显然△BO’C‘≌△BOC,△BP’C‘≌△BPC。
由于∠BO’C‘=∠BOC=120°=180°-∠BO’O,∴A、O、O‘、C’四点共线。
∴AP+PP‘+P’C‘≥AC’=AO+OO‘+O’C‘,即PA+PB+PC≥OA+OB+OC。
14.(95全国竞赛) 菱形ABCD的内切圆O与各边分别交于E、F、G、H,在弧EF和弧GH上分别作⊙O的切线交AB、BC、CD、DA分别于M、N、P、Q。
求证:MQ//NP。
【分析】由AB∥CD知:要证MQ∥NP,只需证∠AMQ=∠CPN,
结合∠A=∠C知,只需证
△AMQ∽△CPN
←,AM·CN=AQ·CP。
连结AC、BD,其交点为内切圆心O。设MN与⊙O切于K,连结OE、OM、OK、ON、OF。记∠ABO=φ,∠MOK=α,∠KON=β,则
∠EOM=α,∠FON=β,∠EOF=2α+2β=180°-2φ。
∴∠BON=90°-∠NOF-∠COF=90°-β-φ=α
∴∠CNO=∠NBO+∠NOB=φ+α=∠AOE+∠MOE=∠AOM
又∠OCN=∠MAO,∴△OCN∽△MAO,于是,
∴AM·CN=AO·CO
同理,AQ·CP=AO·CO。
【评注】
15.(96全国竞赛)⊙O1和⊙O2与ΔABC的三边所在直线都相切,E、F、G、H为切点,EG、FH的延长线交于P。求证:PA⊥BC。
【分析】
【评注】
16.(99全国竞赛)如图,在四边形ABCD中,对角线AC平分∠BAD。在CD上取一点E,BE与AC相交于F,延长DF交BC于G。求证:∠GAC=∠EAC。
证明:连结BD交AC于H。对△BCD用塞瓦定理,可得
因为AH是∠BAD的角平分线,由角平分线定理,
可得,故。
过C作AB的平行线交AG的延长线于I,过C作AD的平行线交AE的延长线于J。
则,
所以,从而CI=CJ。
又因为CI//AB,CJ//AD,故∠ACI=π-∠BAC=π-∠DAC=∠ACJ。
因此,△ACI≌△ACJ,从而∠IAC=∠JAC,即∠GAC=∠EAC。
已知AB=AD,BC=DC,AC与BD交于O,过O的任意两条直线EF和GH与四边形ABCD的四边交于E、F、G、H。连结GF、EH,分别交BD于M、N。求证:OM=ON。(5届CMO)
证明:作△EOH△E’OH‘,则只需证E’、M、H‘共线,即E’H‘、BO、GF三线共点。
记∠BOG=α,∠GOE’=β。连结E‘F交BO于K。只需证=1(Ceva逆定理)。
===1
注:筝形:一条对角线垂直平分另一条对角线的四边形。
对应于99联赛2:∠E’OB=∠FOB,且E‘H’、GF、BO三线共点。求证:∠GOB=∠H‘OB。
事实上,上述条件是充要条件,且M在OB延长线上时结论仍然成立。
证明方法为:同一法。
还有一个蝴蝶定理,你自己查一下百度百科吧,输入平面几何即可。

收起